Visuelle Entscheidungsprozesse

Hendrikje Nienborg

Wahrnehmung als Interpretation: #thedress

http://www.wired.com

Der Einfluss unterschiedlicher Annahmen über die Beleuchtung des Kleids

Demo by Yukiyasu Kamitani

Konzeptuelle Modelle für Wahrnehmungsentscheidungen

Konzeptuelle Modelle für Wahrnehmungsentscheidungen

immer noch erstaunlich kontrovers

BEHAVIORAL AND BRAIN SCIENCES (2016), Page 1 of 77 doi:10.1017/S0140525X15000965, e229

Cognition does not affect perception: Evaluating the evidence for "top-down" effects

> Chaz Firestone Department of Psychology, Yale University, New Haven, CT 06520-8205 chaz.firestone@yale.edu

> Brian J. Scholl Department of Psychology, Yale University, New Haven, CT 06520-8205 brian.scholl@yale.edu

versus

"Wahrnehmung als kontrollierte Halluzination" Andy Clark

ein empirisches Problem

Vorstellung, Erwartung, Kontext, Motivation (Feedback)

Plan für diesen Vortrag

1) Untersuchung visueller Entscheidungsprozesse mit einem Fokus auf feedforward Informationsverarbeitung.

2) Evidenz für eine Feedbackkomponente, selbst bei diesem auf feedforward Prozesse konzentrierten Ansatz.

3) Testen einer Hypothese zur funktionalen Rolle solchen Feedbacks.

historisch: Ansatz dominiert von feedforward Perspektive

William T. Newsome, Stanford

Selektivität für Orientierung in der primären Sehrinde (V1)

Hubel & Wiesel (1968)

historisch: Ansatz dominiert von feedforward Perspektive

Parametrisieren des visuellen Reizes für Orientierung:

Nienborg & Cumming, *J Neurosci* (2014), after Newsome et al., *Nature* (1989)

0% Signal, korrekte Antwort ist nicht definiert

Wie liest das Gehirn diese sensorische Information aus?

- Einfach mitteln?
- Selektiv, z.B. die informativsten Neurone stärker berücksichtigen?
- die schnellsten Antworten stärker berücksichtigen?

historisch: Ansatz dominiert von feedforward Perspektive

> Diskriminationsfähigkeit: einzelnes Neuron vs Tier

Nienborg & Cumming (2014)

Neuronale Aktivität korreliert mit der Entscheidung

Neuronale Antwort [Hz]

z.B. Celebrini, Newsome (1994), Britten et al. (1996) Nienborg and Cumming (2006, 2007, 2014)

Neuronale Aktivität korreliert mit der Entscheidung: "Entscheidungssignal"

Nicht erklärt durch den visuellen Reiz.

historisch: Ansatz dominiert von feedforward Perspektive

Aber:

Zunehmend Evidenz für eine Feedbackkomponente dieser Entscheidungssignale.

Nienborg & Cumming, (2009) Wimmer et al. (2015) Bondy et al. (2018)

Plan für diesen Vortrag

1) Untersuchung visueller Entscheidungsprozesse mit einem Fokus auf feedforward Informationsverarbeitung.

2) Evidenz für eine Feedbackkomponente, selbst bei diesem auf feedforward Prozesse konzentrierten Ansatz.

3) Testen einer Hypothese zur funktionalen Rolle solchen Feedbacks.

Schichten des Kortex: Beispiel prim. Sehrinde

Entscheidungssignale sind stärker in den feedback dominierten Schichten

Plan für diesen Vortrag

1) Untersuchung visueller Entscheidungsprozesse mit einem Fokus auf feedforward Informationsverarbeitung.

2) Evidenz für eine Feedbackkomponente, selbst bei diesem auf feedforward Prozesse konzentrierten Ansatz.

3) Testen einer Hypothese zur funktionalen Rolle solchen Feedbacks.

Was ist die Funktion solchen Feedbacks?

Es verschlechtert die sensorische Information!

Wo es hilft: visuelle Suche

- Merkmalgerichtete Aufmerksamkeit
- relevantes Vorwissen

Formalisiert als Inferenzprozess

nach Haefner et al. (2016)

Ist diese Funktion dieses Feedbacksignals verallgemeinerbar?

Test dieses Inferenzmodells

Hypothese: Feedback in einer Diskriminationsaufgabe und merkmalsgerichtete Aufmerksamkeit nutzen denselben Mechanismus.

Empirisches Vorwissen:

Merkmalsgerichtete Aufmerksamkeit wirkt räumlich global

Quelle: Frank Tong

Test dieses Inferenzmodells

Hypothese: Feedback in einer Diskriminationsaufgabe und merkmalsgerichtete Aufmerksamkeit nutzen denselben Mechanismus.

Feedforward

Feedforward

Inferenzmodell & merkmalsgerichtete Aufmerksamkeit

Katrina Quinn Paria Stephane Pourriahi Clery

Hinweis auf relevante Seite

Katrina Quinn Paria Stephane Pourriahi Clery

Hinweis auf relevante Seite

Test der Vorhersage:

Entscheidungssignale gibt es auch für *irrelevante, ignorierte* visuelle Reize.

Die Tiere ignorieren den irrelevanten Reiz erfolgreich: Verhalten

Quinn et al. (2018)

Die Tiere ignorieren den irrelevanten Reiz erfolgreich: neuronale Signatur

Modulation durch räumliche Aufmerksamkeit

Entscheidungssignal auch für den *ignorierten* Reiz

Entscheidungssignal (Korrelation)

Entscheidungssignal auch für den *ignorierten* Reiz

Ist diese Funktion dieses Feedbacksignals verallgemeinerbar?

Diese Ergebnisse sprechen dafür.

Zusammenfassung

- Entscheidungssignale in V2 sind stärker in Schichten, die v.a. Feedback bekommen.
- Wir finden Entscheidungssignale in V2 und V3a für einen irrelevanten und ignorierten Reiz.
- Dies bestätigt eine Vorhersage des Inferenzmodells (unter der Annahme, dass das mit der Entscheidung verbundene Feedback neuronalen Mechanismen merkmalsgerichteter Aufmerksamkeit gleicht).

Unsere Arbeitshypothese:

Feedback vermittelt eine kontinuierlich aktualisierte Annahme

Nienborg & Roelfsema (2015)

Warum ist Feedback wichtig?

- Es kommt überall vor im Gehirn.
- Die funktionale Rolle stellt seit langem ein Rätsel dar.
- Es spielt eine Rolle in psychiatrischen Erkrankungen, z.B. Schizophrenie (z.B. Gold et al. 2007).
- Fundamental für unser Verständnis biologischer Hirnfunktionen.

Dank

Lenka Seillier Katsu Kawaguchi Katrina Quinn Paria Pourriahi Stephane Clery

Finanzielle Unterstützung: ERC starting grant

Center for Integrative Neuroscience

Humboldt Foundation

DFG: CRC 1233 Robust Vision FOR 1847 Primate Systems Neuroscience

Verner Reichardt Centre for Integrative Neuroscience

